

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE

ELECTROTECHNICS N6

(8080096)

27 November 2019 (X-Paper) 09:00–12:00

This question paper consists of 6 pages and a formula sheet of 5 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE ELECTROTECHNICS N6 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Sketches must be large, neat and fully labelled.
- 5. Write neatly and legibly.

QUESTION 1: DC MACHINES

1.1	State ONE condition under which a DC machine is working at maximum	
	efficiency.	(2)

- 1.2 Name THREE types of variable losses in a DC machine.
- 1.3 Explain how the speed of a DC motor varies in relation to the armature voltage.
- 1.4 The following readings were obtained when doing a load test on a DC shunt motor using a brake drum:

Spring balance reading	10 kg and 35 kg
Speed of motor	950 r/min
Line current	30 A
Distance of the drum	40 cm
Applied voltage	200 V

Use the data provided above to calculate the following quantities:

	1.4.1	The output power	(2)
,	1.4.2	The efficiency	(4) [13]

QUESTION 2: AC CIRCUIT THEORY

2.1 A 3-phase, star-connected system with 230 V between each phase and a neutral, has resistances of 4 Ω , 5 Ω and 6 Ω respectively in the three phases.

Calculate the following:

Explair	n what is meant by a <i>3-phase balanced load</i> .	(2) [16]
2.1.3	The total power absorbed	(2)
2.1.2	The neutral current	(6)
2.1.1	The current flowing in each phase	(6)

2.2

(3)

(2)

-4-

QUESTION 3: TRANSFORMERS

3.1	Name FOUR of the most common three-phase transformer connections.	

3.2 A 650 kVA, single-phase transformer working at a power factor of 0,8 lagging has a maximum efficiency of 95%. The secondary current at maximum efficiency is 85% of the full-load current.

Calculate the following quantities:

3.2.1	The iron loss at maximum efficiency	(4)
3.2.2	The copper loss at maximum efficiency	(2)
3.2.3	The copper loss at full load	(1)
3.2.4	The full-load efficiency	(2) [13]

QUESTION 4: AC MACHINES – GENERATORS

- 4.1 Explain the term *armature reaction* as applied to alternators.
- 4.2 A three-phase, star-connected alternator in open-circuit, is required to generate a line voltage of 3 600 V, 50 Hz when driven at 500 r/min. The stator has 3 slots per pole per phase and 20 conductors per slot.

Assume that ALL the conductors per phase, are connected in series and that the coils are full-pitched. The distribution factor is 0,96.

Calculate the following:

- 4.2.1 The number of poles
 - 4.2.2 The useful flux per pole
- 4.3 Define the term *distribution factor*.

(3)

(2)

(9)

(2) [**16**]

QUESTION 5: AC MACHINES – SYNCHRONOUS MOTORS

- 5.1 What do V-curves represent in synchronous motor theory?
- 5.2 A 7 000 VA, 450 V, three-phase, star-connected synchronous motor is fully loaded and draws 5,5 kW at a leading power factor. The synchronous impedance is (0,35 + j3,5) ohms per phase.

Calculate the following quantities:

6		[13]
5.2.4	The load angle in electrical degrees	(1)
5.2.3	The EMF to which the machine is excited	(6)
5.2.2	The phase current	(2)
5.2.1	The power factor	(1)

QUESTION 6: AC MACHINES – INDUCTION MOTORS

6.1 An 8-pole, 3-phase, 50 Hz induction motor develops its maximum torque of 185 Nm when running at 360 r/min. The rotor resistance is 0,3 ohms.

Calculate the torque developed by the rotor when running at a slip of 5%.

HINT:
$$T_{\text{MAXIMUM}} = \frac{3 \cdot S \cdot E_0^2}{2 \cdot \pi \cdot N(R_2^2 + [S \cdot X_0]^2)}$$
(9)

- 6.2 Define the term *slip of an induction motor*.
- 6.3 Name THREE methods that are used to measure the slip of an induction motor.
- 6.4 Complete the following sentence by writing only the missing word next to the question number (6.4.1–6.4.2) in the ANSWER BOOK.

When a load is placed on a three-phase induction motor, its speed will be (6.4.1) and slip (6.4.2).

(2) [16]

(3)

(2)

(3)

QUESTION 7: GENERATION AND DISTRIBUTION OF AC

A 3-phase, 50 Hz transmission line, 100 km long delivers 20 MW at 0,9 power factor lagging and at 110 kV. The resistance and reactance of the line per phase per km are 0,2 Ω and 0,4 Ω respectively while the capacitance is 0,08 × 10⁻³ F/km.

Use the nominal T-method to calculate:

7.1	The current at the sending end	Ş		(4)
7.2	The voltage at the sending end			(8)
7.3	The efficiency of transmission			(1) [13]
			TOTAL:	100

(8080096)

-1-

ELECTROTECHNICS N6

FORMULA SHEET

DC MACHINES	E = V - Ia Ra
	$\frac{E_1}{E_2} = \frac{N_1 \Phi_1}{N_2 \Phi_2}$
	$\frac{T_1}{T_2} = \frac{I_1 \Phi_1}{I_2 \Phi_2}$

SPEED CONTROL $E = V - Ia\left(\frac{R Rse}{R + Rse} + Ra\right)$

$$E = V - Ia Ra - Ise Rse$$

TESTING DIRECT METHOD

$$\eta = \frac{2\pi Nr \left(W - S\right)}{60 \ IV}$$

SWINBURNE METHOD η = $\frac{IV - (Ia^2Ra + Ia_oV + IsV)}{IV}$

$$\frac{\eta}{generator} = \frac{IV}{IV + Ia^2 Ra + Ia_o V + Is V}$$

HOPKINSON EFFICIENCIES THE SAME

$$\eta = \sqrt{\frac{I_1}{I_1 + I_2}}$$

IRON LOSS

$$= I_2 V - \left\{ (I_1 + I_3)^2 Ra + (I_1 + I_2 - I_4)^2 Ra + (I_3 + I_4) V \right\}$$

= C

$$\eta = \frac{I_1 V}{I_1 V + (I_1 + I_3)^2 Ra + I_3 V + \frac{C}{2}}$$
$$\eta = \frac{(I_1 + I_2) V - \left\{ (I_1 + I_2 - I_4)^2 Ra + I_4 V + \frac{C}{2} \right\}}{(I_1 + I_2) V}$$

AC LOADS STAR SYSTEMS	$\overline{I}_R = \frac{V \ \underline{o}^\circ}{Z_{RN} \ \underline{\phi_1}}$	_
	$-\frac{1}{V} -120^{\circ}$	Vrn = REFERENCE
	$\overline{I}_{y} = \frac{V \mid -120^{\circ}}{Z_{YN} \ \underline{\phi_{2}}}$	R-Y-B SEQUENCE
	$\overline{I}_B = \frac{V 120^{\circ}}{Z_{BN} \frac{\phi_3}{2}}$ $\overline{I}_N = \overline{I}_R + \overline{I}_B + \overline{I}_Y$	
	$\overline{I}_N = \overline{I}_R + \overline{I}_B + \overline{I}_Y$	
BALANCED CIRCUIT	$\overline{I}n = 0$	
DELTA-SYSTEMS	$\overline{I}_{RY} = \frac{\overline{V}_{RY}}{\overline{Z}_{RY}} \overline{I}_R = \overline{I}_{RY} - \overline{I}_{BR}$	
	$\bar{I}_{YB} = \frac{\bar{V}_{YB}}{\bar{Z}_{YB}} \bar{I}_Y = \bar{I}_{YB} - \bar{I}_{RY}$	
	$\overline{I}_{BR} = \frac{\overline{V}_{BR}}{\overline{Z}_{BR}} \overline{I}_B = \overline{I}_{BR} - \overline{I}_{YB}$	
THREE-WIRE SYSTEMS	$V_{sn} = \frac{\frac{\overline{V}_{an}}{\overline{Z}_1} + \frac{\overline{V}_{bn}}{\overline{Z}_2} + \frac{\overline{V}_{cn}}{\overline{Z}_3}}{\frac{1}{\overline{Z}_1} + \frac{1}{\overline{Z}_2} + \frac{1}{\overline{Z}_3}}$	
	$\overline{V}_{aN} = \overline{V}_{aS} + \overline{V}_{sN}$	
	$\overline{V}_{bN} = \overline{V}_{bS} + \overline{V}_{sN}$	
	$\overline{V}_{cN} = \overline{V}_{cS} + \overline{V}_{sN}$	
	$\overline{I}_a = \frac{\overline{V}_{aS}}{\overline{Z}_1}$	
	$\overline{I}_B = \frac{\overline{V}_{bS}}{\overline{Z}_2}$	
	$\overline{I}_C = \frac{\overline{V}_{cS}}{\overline{Z}_3}$	

-2-

COMPLEX WAVE FORMS

$$e_1 = E_m Sin \omega t$$
$$e_2 = K_2 E_m Sin 2 \omega t$$
$$e_3 = K_3 E_m Sin 3 \omega t$$

$$e = E_m (Sin \ \omega t + k_2 \ Sin \ 2 \ \omega t + k_3 \ Sin \ 3 \ \omega t)$$

$$P = \frac{E_m^2 1 + E_m^2 2 + E_m^2 3 + \dots + E_m^2 N}{2R}$$

$$P = \left(I_m^2 1 + I_m^2 2 + I_m^2 3 + \dots + I_m^2 N\right) R$$

$$I = \sqrt{\frac{I_m^2 1 + I_m^2 2 + \dots + I_m^2 N}{2}}$$

$$E = \sqrt{\frac{E_m^2 1 + E_m^2 2 + \dots + E_m^2 N}{2}}$$

$$Cos \ \phi = \frac{I^2 R}{E I} = \frac{\frac{E^2}{R}}{E I}$$

TRANSFORMERS

$$\eta = \frac{S \cos \phi}{S \cos \phi + Po + Psc}$$

Any value of load at k of fullload

$$\eta = \frac{k \ S \ Cos \ \phi}{k \ S \ Cos \ \phi + Po + k^2 \ Psc}$$

MAXIMUM EFFICIENCY

$$K = \sqrt{\frac{Po}{Psc}}$$

$$\eta = \frac{k \ S \ Cos \ \phi}{k \ S \ Cos \ \phi + Po + k^2 \ Psc}$$

FORMULAE

$$\% R = \frac{I \operatorname{Re}}{V}$$
$$\% R = \frac{I \operatorname{Xe}}{V}$$
$$\% X = \frac{I \operatorname{Xe}}{V}$$
$$\% Z_e = \% R_e + j \% X_e$$
$$V_{SC} = I Z_e$$
$$P_{SC} = I^2 R_e$$
$$Cos \phi_e = \frac{P_{SC}}{I_1 V_{SC}}$$
$$\operatorname{Reg} = \frac{V_{SC} \operatorname{Cos} (\phi_e \pm \phi_2)}{V}$$
$$\operatorname{Reg} = \frac{I Z \operatorname{Cos} (\phi_e \pm \phi_2)}{V}$$
$$\operatorname{Reg} = \frac{I (\operatorname{Re} \operatorname{Cos} \phi_2 \pm \operatorname{Xe} \operatorname{Sin} \phi_2)}{V}$$

AC MACHINES ALTERNATORS

$$n = \frac{f}{p}$$

$$Kd = \frac{Sin\frac{n\alpha}{2}}{nSin\frac{\alpha}{2}}$$

$$Kp = Cos\frac{\psi}{2}$$

$$E = 2 Kf Kd Kp f \Phi Z$$

$$E = \sqrt{(V Cos \phi + IR)^2 + (V Sin \phi \pm IX)^2}$$

$$E = V + IR Cos \phi \pm IX Sin \phi$$

$$\overline{E} = E | \phi + IR | o + Ix | 90$$

$$Reg = \frac{E - V}{V}$$

(8080096)

SYNCHRONOUS MOTOR $\overline{V} + \overline{E} = \overline{E}_R \quad \overline{E}_R = \overline{IZ}$

 $\overline{E} = V |\underline{-\phi} + IR |\underline{180^{\circ}} + IX |\underline{-90^{\circ}}$

INDUCTION MOTOR

$\frac{Eo}{V_1} = \frac{Zr}{Z_s}$	$E_2 = SEo$
$X_2 = SXo$	$I_2 = \frac{E_2}{Z_2}$
$Z_2 = \sqrt{R_2^2 + (SXo)^2}$	$Io = \frac{Eo}{Zo}$
$Zo = \sqrt{R_2^2 + Xo^2}$	
$I_2 = \frac{SEo}{\sqrt{R_2^2 + (SXo)^2}}$	$Io = \frac{Eo}{\sqrt{R_2^2 + Xo^2}}$

MAXIMUM EFFICIENCY

$$R_2 = SXo$$

Rotor copper loss = *S rotor input*

$$S = \frac{N_1 - N_2}{N_1}$$

$$P = \sqrt{3} V_L I_L \cos \phi$$

$$KVA = \sqrt{3} V_L I_L$$